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Abstract 
Ovarian cancer is one of the most dangerous and deadly cancers in women. This cancer progresses very quickly and metastasizes to 

the peritoneal cavity and pelvis. It is called silent death because 75% of patients who refer to hospitals are diagnosed at advanced stages 

of the disease. Transvaginal ultrasonography, Cancer antigen (CA125, Doppler imaging, Human kallikrein 10 (hK10), lysophosphatidic 

acid (LPA), computerized tomography scans, cytology and / or biopsy are used to diagnose ovarian cancer. Surgery and chemotherapy 

are also among common treatments used for the treatment of ovarian cancer. However, these traditional therapies have a variety of side 

effects, including nausea, vomiting, peripheral neuropathy, neurotoxicity. Nanotechnology with its unique features can overcome these 

limitations and problems. Nanoparticles can use modern therapies, such as nanotechnology-based photodynamic therapy, 

nanotechnology-based gene therapy, nanotechnology-based radiotherapy and radiofrequency therapy, and nanotechnology-based cancer 

theranostic that can helps in the treatment of cancer. Nanotechnology-based photodynamic therapy is considered one of the most 

effective, safe, and novel methods in cancer treatment. The use of nanoparticles as photosensitizers can overcome many of the limitations 

of traditional therapies. Nanoparticles can be targeted to specific sites, controllable, in some cases, used in a way to produce ROS. The 

use of nanotechnology can attenuate toxicity in target sites and greatly reduce injuries to normal cells. 
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1 Introduction 
Ovarian cancer is the most common cause of mortality in 

adult women (1). Numerous studies have shown that ovarian 

cancer takes more victims than breast cancer. According to a 

study conducted by the American Cancer Society, the mortality 

rate from ovarian cancer was about 69%, while such a rate was 

about 19% fir breast cancer. Some genetic and epigenetic 

changes may occur in the body to transform a normal ovarian 

cell to a cancer cell. Some researchers believe that ovarian 

cancer is the result of a mutation in the gene on chromosome 

17q, known as BRCA1. It is estimated that mutations in this 

gene may increase the risk of ovarian cancer by 30% in 

individuals who are over 60 years old.  The origin of ovarian 

cancer may be the surfaces of the ovary, the fallopian tube, or 

the mesothelium-lined peritoneal cavity. Ovarian cancer 

mainly affects postmenopausal women and is a deadly cancer. 

The cure rate for this cancer is 30%. This may be due to the fact 

that most patients only refer to medical centers when the 

disease progresses to advanced stages with extensive metastatic 

lesions in the peritoneal cavity (2-5).  

In general, ovarian cancer accounts for 4% of all cases of 

cancer in women. In addition, gynecologic malignancies are the 

leading cause of death in females. Ovarian cancer is mostly 

asymptomatic at the early stages, indicating why most of 

patients are diagnosed at advanced stages of the disease when 

hospitalized in medical centers (6). Ovarian cancer is ranked as 

the second gynecological cancer in terms of the incidence 

among women (7, 8). Cancer cells grow rapidly in ovarian 

cancer, which is a very aggressive cancer that quickly 

metastasizes to other tissues and organs. One major difference 

between this cancer and other types of cancer is that unlike 

other types of cancer, caused by vascular dissemination, 

ovarian cancer rarely spreads through the angiogenesis process. 

In addition, it may involve pelvic and / or para-aortic lymph 

nodes. Patients with ovarian cancer have locally advanced 

disease in the pelvis, with contiguous extension to or 

encasement of the reproductive organs (uterus, fallopian tube, 

tube, ovaries) and the sigmoid colon (7, 9). Another type of 

tissue change occurring during ovarian cancer is the 

transformation of the omentum. During the disease, the 

omentum, a soft 20 × 15× 2-cm fat pad which covers the 

abdominal cavity and bowel, transforms and this causes 

obstruction of the stomach and the small and large bowel and 

cause severe pain to the patient (10). 

 

2 Risk factors 
Some risk factors include: (a) several lines of evidence 

suggest that certain drugs and chemicals may increase 

gonadotropins by increasing estrogen degradation in the liver 

or directly stimulating their production by the pituitary gland. 

Pelvic irradiation, exposure of follicles to chemicals or toxic 

metabolites, or ovarian infections such as mumps are other risk 

factors of the disease development (11). (b) The long-term use 

of estrogen-only replacement therapy (particularly for 10 or 

more years) (12). (c) Women with susceptibility genes such as 

BRCAl (13-18). (d) Women who have had first-degree 

relatives with ovarian cancer (19-22). (e) In general, the 

incidence of ovarian cancer is increased with age. According to 

some studies, the incidence is higher in individuals who have 

over 60 years old. It is also very rare to occur before 40 years 

http://www.jirb.dormaj.com/
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old (23). (f) Some findings suggest the significance of 

geographic and ethnic variations in the incidence of ovarian 

cancer. Studies showed that Caucasian women in industrialized 

countries such as the North America and Europe have a higher 

incidence of ovarian cancer than others (24). (g) Some studies 

have reported a dietary effect on the development of ovarian 

cancer. These studies have shown that Western diet, which is 

high in meats and low in vegetables may have a role in the 

incidence of ovarian cancer. Studies have also shown that 

whole-grain food, low-fat milk, calcium or lactose, vegetable, 

significantly reduced the risk of ovarian cancer (25). (h) 

Smoking and tobacco are also linked to ovarian cancer and 

increase the risk of cancer (26, 27). (i) Exposure to talc or 

asbestos has been demonstrated that cause or make individuals 

probe to develop ovarian cancer. These substances cause 

chronic inflammation in the ovarian epithelium. Inflammation 

is capable of producing oxidants that can cause direct damage 

to DNA and lead to increased proliferation of cancer cells, 

enhancing the risk of mutagenesis (28). 

 

3 Diagnosis 
3.1 Screening 

If ovarian cancer is diagnosed at the early stages of the 

disease, the chance of recovery is increased. Nowadays, 

ultrasound, which is a non-invasive procedure, is used for 

screening the human body (29-32). 

 

3.2 Transvaginal ultrasonography 

This imaging method measures the ovarian size and 

estimates the internal ovarian structure, volume, septum 

thickness and papillary formation (33). 

 

3.3 Doppler imaging 

This imaging method is a complementary method for 

improving the sensitivity of transvaginal ultrasound assessment 

and evaluation of angiogenesis in ovarian tumors (34, 35). 

 

3.4 Cancer antigen (CA125) 

This cancer antigen (CA125) is overexpressed in nearly 

82% of women with ovarian cancer compared with healthy 

women (36). 

 

3.5 Lysophosphatidic acid (LPA) 

In this examination, the serum concentration of LPA is 

measured and it has been shown that more than 90% of female 

patients with ovarian cancer exhibit increased levels of this 

molecule in their serum samples (37).  

 

3.6 Human kallikrein 10 (hK10) 

This enzyme is a secreted serine protease highly expressed 

in ovarian tissues and considered a novel biomarker for ovarian 

cancer. The serum level of hK10 is a strong and independent 

prognostic marker for ovarian cancer (38).    

 

4 Conventional treatments 
In general, conventional treatments are routinely applied for 

patients with ovarian cancer depending on the stage of the 

disease. The first line therapy is surgery followed by 

chemotherapy and in some cases radiotherapy. In the case of 

initial responses, secondary therapy might be needed to 

complete the treatment course (39, 40).  

 

 

 

4.1 Surgical treatment 

The surgical procedure is the commonest invasive 

therapeutic strategy used for patients with ovarian cancer. This 

surgery includes: total hysterectomy, bilateral salpingo-

oophorectomy, omentectomy and peritoneal cytology. These 

procedures are performed by trained gynecological specialists 

or oncologists. If the surgery process accomplished, it brings 

the best chance for the overall survival of patients. 

Laparotomy is a surgical procedure involving a large incision 

through the abdominal wall to gain access into the abdominal 

cavity. It seems that the laparoscopic removal of ovarian cysts 

is best strategy only in patients with benign cysts (41-49). The 

main purpose of cytoreductive surgery is to remove the entire 

tumor, which may have metastasized to the pelvic and 

abdominal cavities, i.e., “optimum cytoreduction,” in order to 

increase the efficacy of additional adjuvant therapy (40). In 

fact, surgery can reduce the number of tumor cells and 

subsequently the size of tumors (50). 

 

4.2 Chemotherapy 

Several studies show that women who have not successful 

surgery exhibit poor prognosis in which the 5-year survival rate 

is about 0-5%. Therefore, due to the low efficacy of surgery 

alone, chemotherapy can be combined with conventional 

therapies. Chemotherapy is usually prescribed following the 

surgical procedures. Chemotherapy prevents the disease 

progress and improve the overall survival of patients with 

cancer (51-54). Chemotherapeutic agents are intravenously 

administered to patients with ovarian cancer and prescribed in 

5-8 sessions. Ovarian tumors tend to be chemo-sensitive and 

confine themselves to the surface of the peritoneal cavity. 

These features have made them a suitable target for 

intraperitoneal (IP) chemotherapy. A group of studies have 

shown that intraperitoneal chemotherapy improves overall 

survival of patients with cancer (55). The most common drug 

used for the treatment of ovarian cancer is platinum (56). 

Nowadays, combination chemotherapy is used as a current 

regimen for the treatment of advanced ovarian cancer. Various 

chemotherapeutic agents, such as paclitaxel, topotecan, 

gemcitabine, oral etoposide, olaparib, cyclophosphamide, 

chlorambucil, melphalan, thiotepa, treosulfan, and 

encapsulated doxorubicin are prescribed in combination with 

carboplatin or cisplatin (39, 40, 57, 58) 

 

4.3 Some side effects of common treatments for ovarian 

cancer 

Many patients with ovarian cancer experience recurrence, 

despite responding well to primary chemotherapy. Whether a 

patient undergoes second or third course of chemotherapy 

mainly depends on the emergence of side effects of drugs used. 

The most common side effect reported in patients with ovarian 

cancer is chemotherapy-induced nausea and vomiting (CINV) 

(59). In addition, chemotherapy may cause neurotoxicity in the 

peripheral and central nervous system, resulting in cognitive 

deficits, encephalopathy, dementia, or even coma the adverse 

effects may limit the dosage and usage of chemotherapeutic 

agents. Bone marrow toxicity is another well-known adverse 

effects in response to chemotherapy; however, this problem 

could be partially attenuated by the administration of growth 

factors or bone marrow transplantation (60). Also, some drugs 

used for the treatment of ovarian cancer, such as a combination 

of doxorubicin hydrochloride and cisplatin, may increase the 

risk of leukemia when used in relatively high doses (39). 

Generally, an increase in the survival of patients is the major 

goal of chemotherapy, a decrease in clinical symptoms and 

http://www.jirb.dormaj.com/
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preservation of the quality of life are also critical issues that 

should be taken into account.  Reports indicated that 

chemotherapy can cause nausea, vomiting, hair loss, cognitive 

dysfunction, fatigue, changes in sexual desire, and a reduction 

in the quality of life (61). 

 

5 Applications of nanotechnology in ovarian 

cancer 
Nanotechnology is an interdisciplinary field and provide 

extraordinary opportunities for biological sciences. One of its 

beneficial use is the treatment of cancer, which has received 

much attention due to the growing number of patients. In fact, 

nanotechnology provides early diagnosis, prediction, 

prevention, personalized therapy, and targeted therapy. Some 

researchers believe that nanotechnology paved the way for the 

treatment of various types of cancer. Some of features have 

distinguished nanotechnology from other scientific approaches 

that include: (a) nanosystems and nanostructures can be can be 

used both as a diagnostic and a therapeutic factor at the same 

time; (b) drugs are capable of being targeted for specific cells 

or tissues without causing adverse effects on normal 

cells/tissues; and (c) nanosystems are able to carry several 

therapeutic molecules and therefore provide a platform for 

combination therapy to overcome drug-resistance. 

Nanotechnology has opened new therapeutic windows for 

cancer treatment. Some of these new approaches include 

nanotechnology-based photodynamic therapy, 

nanotechnology-based gene therapy, nanotechnology-based 

radiotherapy and radiofrequency therapy, nanotechnology-

based cancer theranostic (62-72). 

 

5.1 Nanotechnology-based photodynamic therapy 

One of the new and relatively widely used fields of 

nanotechnology is photodynamic therapy. In this area, the basis 

of treatment is the use of photosensitizers. In this method, light 

with a certain wavelength is emitted to photosensitizers. Light 

radiation activates photosensitizers, which subsequently 

activates the release of radical oxygen species. The released 

radical oxygen species can induce cell death in tumor cells and 

diminish the rate of angiogenesis. This therapeutic approach 

could be performed locally or systemically. Since this method 

does not suppress the immune system of humans, it can be 

carried out repeatedly by physicians. This method could also 

act as complementary therapy in addition to surgery, 

chemotherapy, or radiotherapy (73, 74). Table 1 shows some of 

the nanostructures used in photodynamic therapy in ovarian 

cancer, as well as other nanoparticles used for diagnostic and 

therapeutic purposes. 

 

Table 1: Shows some of the nanostructures used in photodynamic therapy 

 

 

 

Nano particle Function Reference 

Hypericin-loaded 

nanoparticles 

Hy-loaded NPs are used for photo dynamic therapy against NuTu-19 cancer cells. 

Nanoencapsulation of Hy in PLA improves the treatment outcome and needs lower doses of 
drugs. 

(75) 

Nanocomplex–anti-HER2 

conjugates 

Gold nanoshell-based complex- anti-HER2 conjugates (nanocomplex) binds specifically to 

OVCAR3 cells. These multiple nanostructures are stimulated by near-IR light to induce cell 
death in ovarian cancer cells through photothermal cancer therapy. 

(76)  

SPION-PG-Lys8 / Ce6 

These types of nanostructures exert anti-proliferative activity against SKOV3 ovarian cancer 
cells through photodynamic therapy and the production of reactive oxygen species (ROS). 

 

(77) 

(ZnO-MTAP) 

Zinc oxide (ZnO) nanoparticles conjugated to porphyrin via PDT and subsequently the release 
of reactive oxygen species (ROS) are able to induce selective cytotoxicity against OVCAR-3 in 

ovarian cancer. These nanostructures induce cell death in a dose-dependent manner 

(78) 

Fe3O4@SiO2@APTES@PPa 

(FSAP) 

Magnetic iron oxide modified pyropheophorbide-a fluorescence nanoparticles, 

Fe3O4@SiO2@APTES@PPa (FSAP) are used against ovarian cancer cells (SKOV-3). Upon 

PDT, nanoparticles induce the generation of ROS in cancer cells 

(79) 

Composite Conjugated 

Polymer/Fullerene 

Nanoparticles 

These nanostructures hold promising results in the treatment of a variety of cancer cells, 

including: MDA-MB-231 (human breast cancer), A549 (human lung cancer), and OVCAR3 

(human ovarian cancer). These nanoparticles become activate upon PDT. 

(80) 

Dendrimer-based 

nanoplatforms 

Dendrimer-based nanoplatforms are utilized for cancer-targeted delivery of near-infrared 

photosensitizers, phthalocyanine, and DJ-1 siRNA. These nanostructure is used activated via 

PDT to suppress the DJ-1 protein, one of the key players in resistance of cancer cells to ROS. 

(81) 

Core–shell–shell 

upconversion nanoparticles 

(UCNPs) 

[NaGdF4:Yb/Nd@NaGdF4:

Yb/Er@NaGdF4] 

UCNPs can be used as a theranostic agent. This nanostructure can be used for the combination 

therapy with Pt and PDT against cisplatin resistance. 
(82) 

Polymeric micelles 

Polymeric micelles of P123 and F127 significantly enhance photodynamic effect with Photofrin 
II® and efficiently deliver photosensitizer in SKOV-3 and MCF-7/WT cells. PDT with 

Photofrin II® loaded in polymeric micelles induces with low hemolytic impact. 

(83)  

Folic Acid-Conjugated, 

SERS-Labeled Silver 

Nanotriangles 

Due to having both multimodal optical imaging and SERS detection with hyperthermia 
capabilities through site specificity, this nanostructure can be introduced as an excellent 

candidate for personalized medicine. 

(84) 

Hy-loaded NPs of polylactic 

acid 

This nanosystems serves Hy as a natural photosensitizer. Since Hy has a hydrophobic nature, 
polylactic acid polymers are employed to solve this problem. 

(85) 

http://www.jirb.dormaj.com/
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Figure 1: Shows the role of nanoparticles as photosensitizers in the treatment of ovarian cancer 

 

In general, photodynamic therapy (PDT) is a promising 

therapeutic strategy for cancer treatment in which a specific 

wavelength of light is transmitted to a photosensitizer, energy 

transfer cascades, leading to cytotoxicity in cancer cells (Figure 

1). Photosensitizers stimulate the production of reactive oxygen 

species, eventually leading to apoptotic and necrotic cell death 

by affecting various cellular components. The use of this 

therapeutic mechanism for the treatment of cancer cells is a safe 

and new method in selective destruction of tumors with 

minimal systemic toxicity and side effects on normal cells. 

Creating a successful and desirable PDT requires the accurate 

selection of the desired tissue and the efficient transfer of 

photosensitizers, the photoactivating light and to establish 

dosimetric correlation of light and drug parameters to PDT-

induced tumor response. Nanotechnology offers promising 

solutions for tumor selection and control of photosensitizer bio-

distribution. The feasibility of various designs can also allow 

incorporating the imaging agents and providing the light 

delivery and dosimetric components (86-95). The use of 

nanoparticles and nanostructures in PDT has several 

advantages including excellent colloidal stability, effective and 

desirable protection against enzymes and hydrolysis of 

encapsulated drugs, and controlled release of the drug, In 

addition, in some cases, it is possible to directly stimulate 

nanoparticles to produce reactive oxygen species(up-

conversion nanoparticles, quantum dots, self-lighting 

nanoparticles), and, most importantly, the sizes to which they 

are able to be accumulated in cancer cells using the enhanced 

permeability and retention (EPR) effect of tumor tissues. The 

use of nanoparticles as PS can overcome many of the 

limitations of conventional PDT therapy (96-100). 

 

6 Conclusion 
Ovarian cancer is one of the deadliest cancer affecting the 

female gender. Conventional treatments can cause side effects 

for patients, and, in some cases, may result in recurrence. 

Nanotechnology has also provided solutions for the treatment 

of ovarian cancer. One of these solutions is nanotechnology-

based PDT.  In this method, nanoparticles act as 

photosensitizers. Nanostructures can reduce the need for 

conventional therapies and enhance targeted therapy, leading to 

decreased toxicity of chemotherapeutic agents and decreased 

rates of damages to normal cells. Thus, it can be concluded that 

nanotechnology-based PDT can be used as a promising strategy 

for the treatment of ovarian cancer. 
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